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Abstract. Linkage identification is a technique to recognize decompos-
able or quasi-decomposable sub-problems. Accurate linkage identification
improves GA’s search capability. We introduce a new linkage identifica-
tion method for Real-Coded GAs called LINC-R (Linkage Identification
by Nonlinearity Check for Real-Coded GAs). It tests nonlinearity by
random perturbations on each locus in a real value domain. For the
problem on which the proportion of nonlinear region in the domain is
smaller, more perturbations are required to ensure LINC-R to detect
nonlinearity successfully. If the proportion is known, the population size
which ensures a certain success rate of LINC-R can be calculated. Com-
putational experiments on benchmark problems showed that the GA
with LINC-R outperforms conventional Real-Coded GAs and those with
linkage identification by a correlation model.

1 Introduction

The optimization by means of Genetic Algorithms (GAs) is promoted by the
exchange of building blocks (BBs). BBs are considered sub-solutions and im-
portant subcomponents. GA’s search capability is improved by identifying BBs
accurately and preventing crossover operators from destructing BBs. Thus, link-
age identification, the procedure to recognizing BBs, plays an important role in
GA’s optimization. Many research efforts have been concentrated on the linkage
identification of binary-coded GAs. LLGA (Linkage Learning GA) [1] applies
a two-point-like crossover operator to ring-shaped chromosomes and construct
linkages dynamically. BOA (Bayesian Optimization Algorithm)[2] constructs
a Bayesian network based on the distribution of individuals in a population
and identifies linkages indirectly. LINC (Linkage Identification by Nonlinearity
Check) [3], LIMD (Linkage Identification by non-Monotonicity Detection) [4],
and LIEM (Linkage Identification with Epistasis Measure) [5] identifies link-
age groups based on the nonlinearity, non-monotonicity, and epistasis measures
between loci respectively.
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Real-Coded GAs operate on real-valued vectors as their chromosomes [6]
and have been applied to various real value optimization problems[7,8,9]. When
an objective function in the domain of the reals is decomposable or quasi-
decomposable to a number of lower order sub-functions, the solution of the
original problem is yielded by combining independently obtained sub-solutions.
Solving the sub-problems is considered as obtaining BB candidates in the do-
main of the reals. Thus, accurate linkage identification methods for Real-Coded
GAs are desired.

While many researches on the linkage identification for binary-coded GAs
have been conducted, only a few are known for Real-Coded GAs. Piecewise In-
terval Correlation by Iteration (PICI) [10,11] is one of them. PICI calculates
correlation coefficients among loci, and recognizes the set of loci with high cor-
relations as a linkage group. However, high correlation means that there is linear
relation among the loci. The loci with linear relation are still additively decom-
posable into much smaller sub-problems. Each linkage group as a set of unsepa-
rable portions should have nonlinear relation. Thus, we introduced a new linkage
identification method for Real-Coded GAs called LINC-R (Linkage Identification
by Nonlinearity Check for Real-Coded GAs), based on the nonlinearity among
loci.

In section 2, we briefly review PICI. Then we propose a new method, LINC-R
in section 3. LINC-R is compared to PICI and a conventional Real-Coded GA.
The results of the comparison are reported in section 4, followed by conclusion
in section 5.

2 Piecewise Interval Correlation by Iteration

The probability density function of individual x at generation t under propor-
tionate selection is written as

p(x, t) =
f t(x)p0(x)

∫
f t(x)p0(x)dx

(1)

where f is a non-negative fitness function and p0 is an initial distribution of
individuals. The distribution of individuals in a population reflects the land-
scape of f and that gets amplified as t increases. If there are linkages among
the arguments of f , there also may be some degree of correlation among them.
PICI divides a domain into several sub-domains and calculate correlation coeffi-
cients of the sub-domains. Then the weighted average of the coefficients is taken
as the piecewise interval correlation. PICI recognizes the set of loci with high
correlations as a linkage group.

PICI has two variations, Linkage Identification with Single-Stage evolution
(LISS) and with Multi-Stage evolution (LIMS). LISS learns linkages as optimiza-
tion progresses. LIMS consists of three stages, initial, learning and searching
stage. Firstly, in the initial stage, population forms a linkage structure. Then in
the learning stage, LIMS learns linkages. Finally in the searching stage, LIMS
uses the linkage information in optimization. It is reported that LIMS has higher
performance than LISS.
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3 GA with Linkage Identification by Nonlinearity Check
for Real-Coded GAs

3.1 Nonlinearity Check for Real-Coded GAs

In this section, we propose Linkage Identification by Nonlinearity Check for
Real-Coded GAs (LINC-R). LINC-R is based on an idea that if a function is
linearly decomposable to several sub-functions and two loci belong to different
sub-functions, the partial difference of the function with respect to one of the loci
is independent from the value on the other locus. LINC-R is also an extension of
LINC which is proposed for binary GAs since both LINC and LINC-R identify
linkages based on nonlinearity detection.

LINC checks nonlinearity in each pair of loci whether ∆fi + ∆fj = ∆fij or
not, where ∆fi is the amount of change caused in fitness by a perturbation on
locus i, ∆fj is that caused by a perturbation on locus j, and ∆fij is that by the
perturbations on both i and j at a time. In other words, LINC judges the loci
have linkage when the following condition is satisfied.

|∆fij − (∆fi + ∆fj) | > ε (2)

where ε is a parameter specifying allowable error for nonlinearity check.
Since the chromosomes of Real-Coded GAs are real-valued vectors, LINC-

R can not perturb the value on each locus in the same way that LINC does
on binary strings. Thus we introduced random perturbation. LINC-R checks
nonlinearity by equation (2) with random perturbation,

∆fij = f(xi + ∆xi, xj + ∆xj) − f(xi, xj) (3)
∆fi = f(xi + ∆xi, xj) − f(xi, xj) (4)
∆fj = f(xi, xj + ∆xj) − f(xi, xj) (5)

where ∆xi and ∆xj are chosen randomly so that the perturbed points will fall
into the domain.

LINC-R evaluates the objective function values at four points, (xi, xj), (xi +
∆xi, xj), (xi, xj + ∆xj), and (xi + ∆xi, xj + ∆xj). There is a possibility of
misjudgment that in spite of a pair of loci having a linkage the randomly selected
four points seem to be linear unexpectedly. In order to reduce the possibility of
such misjudgment, a number of individuals are used to identify a linkage. Figure
1 shows the procedure of LINC-R. The number of objective function evaluations
required for LINC-R is {3n(n−1)/2+1}|P |, where |P | is the size of a population
P .

The essential difference between LINC-R and LINC is their domain, the bi-
naries or the reals. LINC-R tests nonlinearity by random perturbations in its
domain while so does LINC by bit-wise perturbations. In the domain of the
binaries, only ‘0’ and ‘1’ can be taken on the locus. However, one random per-
turbation covers only small region in the domain of the reals. Thus, in order to
realize accurate linkage identification, we need to employ properly sized popula-
tion according to the difficulty of problems.
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1.  Randomly initialize a population P. 
2.  for each x in P 
3.    for i = 1 to n-1 
4.      for j = i +1 to n 
 5.        if linkage between locus i and j has not detected yet 
6.          dxi = (Uniform random value [xi

L, xi
U])- xi. 

7.          dxj = (Uniform random value [xj
L, xj

U])- xj. 

8.          ∆fij = f (…, x i + dxi, …, xj + dx j, …)− f (…, xi, …, xj, …) 
9.          ∆fi = f (…, xi + dxi, …, xj , …)− f (…, xi, …, xj , …) 
10.     ∆fj = f (…, xi , …, xj + dx j, …)− f (…, xi, …, xj , …) 
11.     if | ∆fij − (∆fi +∆fj ) | > ε then 
12.        Detect linkage between locus i and j. 
13.     end if 

14.        end if 

15.      end for 

16.    end for 

17.  end for 

 

Fig. 1. LINC-R: Linkage Identification for Real-Coded GA based on nonlinearity

3.2 Population Sizing of the LINC-R

In this section, we will discuss on the population size required for LINC-R. In
order to investigate the population size, we introduced a function fD which has
partial nonlinearity in the domain xi ∈ [0.0, 1.0] for i = 1, ..., n.

fD(x) =
{

fL(x) + fNL(x), if
∑n

i=1 x2
i ≤ r2

fL(x), otherwise.
(6)

fNL(x1, ..., xn) =



1 − 1
r

√
√
√
√

n∑

i=1

x2
i



 (7)

fL(x1, ..., xn) =
λ

n

n∑

i=1

xi (8)

where 0.0 ≤ λ < 1.0 and 0.0 ≤ r ≤ 1.0 are the parameters. The optimal value
of fD is 1.0 at x = (0, ..., 0) and a sub-optimum is λ at x = (1, ..., 1). fD

is nonlinear within an r radius from the origin and linear otherwise. Figure 2
shows an example of fD with n = 2, λ = 0.8, r = 0.2.

Since LINC-R uses four points (xi, xj), (xi + ∆xi, xj), (xi, xj + ∆xj), and
(xi + ∆xi, xj + ∆xj) to test nonlinearity, when all the points are outside of
the nonlinear region of the objective functions, LINC-R fails to detect linkage.
However, it can succeed in detecting linkage as long as at least one of the points
is in the nonlinear region. Here, a denotes the proportion of the nonlinear region
in the domain. a = πr2/4 for fD. The probability that at least one of four points
falls into the nonlinear region is 1−(1−a)4. Thus, the probability of successfully
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Fig. 2. Objective function fD which has nonlinerity in a part of domain

identifying linkage in a pair of loci is,

Pr =
{

1 − (1 − a)4
} |P |∑

i=1

{
(1 − a)4

}i−1
=

{
1 − (1 − a)4

}|P |
. (9)

The third term is derived from the fact that the second term is the sum of the
geometric sequence. From the equation, we have the population size as follows:

|P | =
ln(1 − Pr)
4ln(1 − a)

(10)
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Fig. 3. Success rate of linkage identification along with the proportion of nonlinear
region.

Figure 3 shows the success rate of linkage identification with a = 0.1, 0.05,
0.02, 0.01. X axis shows the number of objective function evaluations to identify
linkage, that is |P | × 4. Dotted lines show theoretical probability obtained from
equation (9). Solid lines show the result of computational experiments on fD

where n = 2. The values are the average of 100 trial runs. A linkage may be
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successfully identified within 100 evaluations if the proportion of the nonlinear
region is more than five percent (a ≥ 0.05). Note that the above discussion
concerns the probability of linkage identification for one pair of loci while there
are nC2 combinations of possible pairs for n dimensional vectors.

3.3 Optimization Procedure of the GA with Linkage Identification
by Nonlinearity Check for Real-Coded GAs

The optimization procedure of real-coded GAs with LINC-R consists of two
stages as shown in figure 4. Firstly, in the linkage identification stage, LINC-R
identifies linkage groups. Then, in the optimization stage, GAs are performed in
each linkage group separately.

 

Linkage identification stage 

Optimization stage
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G
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Exchange genes 

Fig. 4. Optimization by Real-Coded GA with LINC-R.

Here, m denotes the number of linkage groups identified by LINC-R. Gi =
{xki−1, ..., xki} is the set of loci belonging to linkage group i. In the optimization
stage, m islands are created. The population created in the linkage identification
stage is not used in this stage. The population of island i is initialized so that
the genes on the loci belonging to Gi are initialized randomly, and for the genes
on the other loci, the gene on the same locus has the same value throughout
the population. In island i, genetic operators are applied to the only loci in Gi.
Thus, island i optimizes linkage group Gi, that is |Gi| dimensional sub-problem.
In this stage, genes are exchanged among islands periodically. The genes on the
loci in Gi of the best individual of the island i are copied to those of the other
islands. Every time genes are exchanged, all the population in each island has
to be re-evaluated and the number of function evaluations is consumed largely
for the re-evaluation.

Generally, the computational complexity of the optimization problems rises
exponentially as the dimension increases. Thus, in the optimization stage, more
search effort has to be invested to the island which optimizes larger linkage
group. In this paper, we allocate search cost as follows:

The number of generations. Allocate the number of generations propor-
tional to the dimension of linkage group. |Gi| generations are alternated
in island i while |Gj | generations are in island j.
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Population size. Population sizes are set to be proportional to the square of
the dimension. The population size of island i is |Pi| = Cp × |Gi|2 where Cp

is a constant.

4 Numerical Experiments

4.1 Experimental Conditions

We employ SPX (simplex crossover)[12] and MGG (Minimum Generation Gap)
model [13] both employed in the reports on PICI [10,11] in order to compare the
performance of LINC-R and PICI.

We judge the optimal solution (o1, ..., on) is found when ∀i, xi ∈ [oi −
∆x/2, oi + ∆x/2] where ∆x is a resolution of the solution. We set ∆x to 0.001,
same as the PICI’s reports used.

We set the interval of gene exchange depending on the total population which
is the sum of the population of all the islands. When the total population is
smaller than 5,000, genes are exchanged every 50,000 function evaluations. When
the total population is smaller than 10,000, genes are exchanged every 100,000
function evaluations, otherwise every 1,000,000 evaluations.

4.2 Functions with Nonlinearity in the Whole Search Space

Firstly, we use Type I and Type II functions employed by Tsutsui et al. in PICI’s
reports defined by following equations respectively.

F1(x) = FrT (x1, ..., xT ) + FsL(xT+1, ..., xT+L) (11)

F2(x) =
T∑

i=1

Fr2(x2i−1, x2i) + FsL(x2T+1, ..., x2T+L) (12)

where −2.048 ≤ xi < 2.047 for all i. These functions are to be minimized and
have global optimum of 0.0 at x = (1, ..., 1).

FrT is a T dimensional Rosenbrock function defined by equation (13) and
has linkage between the first and the other arguments. Since nonlinearity of this
linkage group exists throughout the domain, proportion of the nonlinear region
is 1.0, that is, a = 1.0.

FrT (x1, ..., xT ) =
T∑

i=2

(
100

(
x1 − x2

i

)2
+ (xi − 1)2

)
(13)

FsL is an L dimensional sphere function defined by equation (14) that has
no linkage.

FsL(x1, ..., xL) =
L∑

i=1

(xi − 1)2 (14)

Both type I and II function are nonlinear among the loci in the same link-
age group in the whole domain. That means a = 1.0 in equation (9) and the
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probability of successfully identifying linkage, Pr, is always 1.0. Thus, we set the
population size in the linkage identification stage to one.

We test the capability of the GA employing LINC-R with various T , the
dimension of Rosenbrock function. T = 2, ..., 8 for Type I function and T =
2, ..., 4 for Type II function. L, the dimension of the sphere function, is fixed to
20. Cp is set to 10.

Ten runs are performed for each parameter setting. Each run continues until
the optimal solution is found or the number of function evaluations reach to
1.0 × 106. The number includes the evaluations for linkage identification.

Table 1 and 2 show the number of successful runs which found the optimum
(#Opt) and the mean (MNE) and the standard deviation (STDEV) of the num-
ber of function evaluations to find the optimum in the runs which found the
optimum. The standard deviations are zero or very small in easy cases because
the optimum solutions are found at the first gene exchange in all the trials in
the cases.

Table 1. Result of optimization of type I function.

without PICI(LIMS) LINC-R
linkage identification

T #Opt MNE #Opt MNE #Opt MNE STDEV
2 10 200,033 10 172,420 10 51,074 0
3 3 452,392 10 204,837 10 52,272 0
4 1 441,632 10 222,771 10 67,053 9,703
5 0 - 10 246,794 10 97,747 12,084
6 0 - 10 266,844 10 144,197 16,413
7 0 - 10 287,307 10 183,976 11,907
8 0 - 10 326,890 10 278,533 18,738

Table 2. Result of optimization of type II function.

without PICI(LIMS) LINC-R
linkage identification

T #Opt MNE #Opt MNE #Opt MNE STDEV
2 0 - 10 205,808 10 51,417 0
3 0 - 10 252,105 10 51,723 15
4 0 - 10 285,725 10 61,619 11,794

For comparison, the results of GA without linkage identification and PICI are
also shown. The results of PICI and the GA without linkage identification are
from the work of Tsutsui et al[11]. Standard deviatoins are not shown because
they are not reported in the work. Obviously, the proposed method – LINC-R –
shows outstanding performance. LINC-R is superior to the conventional methods
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because (1) LINC-R has an ability to identify linkage groups precisely on the
functions with nonlinearity in a whole domain, and (2) Parallel GA optimizes
smaller and easier sub-problems into which the original problem is divided.

4.3 Functions with Nonlinearity in a Part of Search Space

Secondly, we employ the sum of two dimensional trap functions fD defined by
equation (6) which has nonlinearity in a part of its domain.

F (x) =
n/2∑

i=1

fD(x2i−1, x2i) (15)

This function is to be maximized and has global optimum of n/2 at x =
(0, ..., 0). λ is set to 0.8, that means F (x) has a sub-optimum of 0.8n/2 at
x = (1, ..., 1). Each pair of locus 2i − 1 and locus 2i is tightly linked. Thus,
F has n/2 linkage groups. We set n to 12, 16, and 24. We test LINC-R on the
function with various a(= πr2/4) which is the proportion of the nonlinear region
on two dimensional fD. This function gets difficult as a decreases.

For a = 0.01, that is the hardest case in this experiment, the population
size required for identifying a pair of loci with probability 0.99 is 115 which is
obtained by substituting a = 0.01 and Pr = 0.99 in equation (10). For n =
24, the number of function evaluations consumed in the linkage identification
stage is 94,964 (≈ 1.0 × 105) on that occasion. Thus, in this experiment, linkage
identification stage is executed until the number of the function evaluations
reached to 1.0 × 105. Then optimization stage is performed until the optimal
solution was found or the number of function evaluations reached to 1.0 × 108.
20 runs are performed for each parameter setting.

Cp is set to 10/a. Since the problem gets difficult as a decreases, more popu-
lation is required for the problem with smaller a. Thus we set Cp depending on
a.

Table 3, 4 and 5 show the number of successful runs which found the opti-
mum (#Opt) and the mean (MNE) and the standard deviation (STDEV) of the
number of function evaluations to find the optimum in the runs which found the
optimum. The test function F has n/2 linkage groups. For LINC-R, the tables
also show the average rate of the linkage groups successfully identified (Success
rate). For comparison, the result of GA without linkage identification is also
shown.

In the case of n = 12, LINC-R can obtain optimal solution in all 20 trial
runs for every a while so can the GA without linkage identification in a half of
trials for a = 0.02 and only one trial for a = 0.01. In the case of n = 24, that
is the hardest case, LINC-R can obtain optimum in all trials for a smaller than
0.01 and in 11 trials for a = 0.01 while the GA without linkage identification
can obtain no optimum even for a = 0.5.

LINC-R is more effective in reaching the optimal solutions, however, in the
cases of a = 0.1 and a = 0.05 in n = 12 and n = 16, it requires higher com-
putational effort than the conventional GA. We thought that is because of an
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Table 3. Result of optimization.(n = 12)

without LINC-R
linkage identification

Success rate of
a #Opt MNE STDEV #Opt MNE STDEV linkage identification(%)
0.5 20 255,407 538 20 152,760 5.6 100
0.2 20 291,370 18,777 20 234,831 21,311 100
0.1 20 379,521 24,726 20 513,679 43,283 100
0.05 20 599,305 55,613 20 1,272,980 89,762 100
0.02 10 4,614,750 8,449,032 20 3,679,120 436,108 100
0.01 1 7,769,660 - 20 11,846,500 1,533,870 100

Table 4. Result of optimization.(n = 16)

without LINC-R
linkage identification

Success rate of
a #Opt MNE STDEV #Opt MNE STDEV linkage identification(%)
0.5 20 359,487 11,490 20 187,958 21,375 100
0.2 20 428,539 32,691 20 305,411 6,907 100
0.1 20 617,478 43,013 20 1,208,440 73,266 100
0.05 20 1,095,780 364,831 20 3,441,950 348,240 100
0.02 13 3,737,390 1,210,611 20 5,362,120 440,592 100
0.01 0 - - 20 18,904,000 2,421,623 100

Table 5. Result of optimization.(n = 24)

without LINC-R
linkage identification

Success rate of
a #Opt MNE STDEV #Opt MNE STDEV linkage identification(%)
0.5 0 - - 20 208,019 11,559 100
0.2 0 - - 20 954,755 64,969 100
0.1 0 - - 20 2,391,770 146,602 100
0.05 0 - - 20 2,167,270 71,125 100
0.02 0 - - 20 11,551,660 1,058,316 100
0.01 0 - - 11 90,454,300 6,519,236 98

inadequate gene exchange schedule. In the optimization stage, optimization is
performed in parallel and the population size on island i is set to |Gi|2 × 10/a
where Gi is the set of loci in linkage group i. Thus, on the problems with smaller
a, total population size soars higher. For example, in the case of n = 12 and
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a = 0.1, total population is 2,400. That means a computational effort for 2,400
evaluations is consumed every time genes are exchanged among islands. We be-
lieve that LINC-R will be improved more by introducing effective gene exchange
schedule.

The average fitness values at the end of trial runs are shown in figure 5. The
optimal fitness is 6.0, 8.0, and 12.0 for n = 12, n = 16, and n = 24 respectively.
◦ and � indicate the average fitness obtained by LINC-R and the GA without
linkage identification respectively. As a decreases and the problem gets harder,
the performance of the GA without linkage identification inclines while LINC-R
hold on to the optimum or near optimum.
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Fig. 5. ◦ shows the average solution obtained by LINC-R and � shows that by the
GA without linkage identification.

5 Conclusion and Discussion

In this paper, we proposed Linkage Identification by Nonlinearity Check for
Real-Coded GAs (LINC-R). When an objective function is decomposable to
lower order sub-functions, the original problem can be yielded by solving the
sub-problems independently and combining them. Linkage identification is a
technique to recognize such sub-problems. A decomposed sub-problem is the set
of unseparable loci and linear correlated loci are still decomposable. Therefore,
the loci in the same linkage group should have nonlinear relation. Testing the
equality of two partial differences of an objective function in the domain of
the reals, LINC-R detects nonlinearity and reconginzes linkages accurately. The
population size required for LINC-R at a certain probability is estimated as a
function of the proportion of the nonlinear region in the domain.

It was shown that LINC-R outperformed PICI which identifies linkages ac-
cording to correlation of loci on Type I and Type II benchmark functions.

Another experiment showed LINC-R with properly sized population had su-
perior performance to the conventional GA without linkage identification on the
additively decomposable problems.
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If the proposed method is applied to the problems which are not additively
decomposable, LINC-R does not detect any linkage groups and optimization is
performed by one island. That means the method operates like the conventional
GA on such problems except more computational effort is consumed for LINC-
R. It is possible that the problems have the other kinds of decomposability
such as non-monotonicity and epistasis. Real-world problems have some kinds of
decomposablity. For example, a large supply chain can be decomposed to some
small supply acitivities. In order to optimize real-world problems, LIMD and
LIEM are planned to be introduced in real-valued problems in futur work.
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